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Abstract

In recent years, exchange-traded funds (ETFs) have been widely spread to individual in-

vestors as an easyway to diversify their investments. Some ETFs, however, are not tradedwith

enough volume to discover an adequate price, making them difficult for individual investors

to trade. Therefore, to increase the liquidity of low-liquidity ETFs, some stock exchanges have

introduced an incentive scheme in which arbitrage orders are charged lower trading fees. The

questions, however, of how the liquidity changes depending on arbitrage trading costs and

what the mechanism is remain to be answered.

Therefore, in this study I built an artificial market model, which is a kind of agent-based

model, containing an ETF, two stocks, and an arbitrage trader. I then investigated the relation-

ship between the liquidity of the ETF and the trading costs.

The results showed that, because the prices of each risk asset fluctuate in their volatility,

when the volatility is sufficiently greater than the cost, the arbitrage agent has more chances

to make arbitrage trades. Then, when the arbitrage agent trades more, the market price

differential becomes lower. In addition, lower cost increases the depth of waiting trades for

the ETF, whereas the depth tendency for a stock is the opposite. Furthermore, lower cost

increases the trading volume of both. Lower cost reduces the depth and increases the trading

volume for a stock because orders for arbitrage trades and the waiting orders for a stock are

matched. In real financial markets, however, there are traders who order more when the

trading volume increases. Mymodel did not implement this behavior. It is possible that lower

cost would increase both the depth and the trading volume because of such behavior, but this

remains a future work. I also investigated the case of more liquidity for an ETF and found

that the market price differential becomes larger. Even though more arbitrage trades occur

because of the greater liquidity, the market price differential rate does not improve. This result

implies that, when the trading volume of an ETF increases to near that of a stock, improving

the market price differential is more difficult by arbitrage trades like those modeled in this

study. Therefore, this study implies that other ways are needed to improve the market price

∗ Note that the opinions contained herein are solely those of the authors and do not necessarily reflect those of Japan

ExchangeGroup, Inc., its subsidiaries, affiliates, and SPARXAssetManagement Co., Ltd. Contact: TakanobuMizuta

(mizutata@gmail.com)
† SPARX Asset Management Co., Ltd.
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differential in such cases.

1 Introduction

An exchange-traded fund (ETF) is a mutual fund that invests in a diversified portfolio of many

stocks or bonds and is also listed and traded at a stock exchange. In recent years, ETFs have been

widely spread to individual investors as an easy way to diversify their investments. Some ETFs,

however, have not been traded with enough volume to discover an adequate price, making them

difficult for individual investors to trade.

An ETF is exchangeablewith all stocks held by the ETF. Therefore, when the price of the ETF and

the total value of the stocks held by the ETF differ, a trader can buy the cheaper asset, exchange

it*1, sell the more expensive asset, and thus earn a profit from the price difference. Such a trade

is called an “arbitrage trade.” It is said that increasing the number of traders who perform such

arbitrage trades is very important for discovering adequate prices and increasing liquidity.

For example, to increase the liquidity of low-liquidity ETFs, in 2018 the Tokyo Stock Exchange

introduced a market-making incentive scheme, in which designated market makers always place

orders in return for incentives such as lower fees*2.

The questions, however, of how liquidity changes depending on arbitrage trading costs and of

what the mechanism is remain to be answered.

Empirical studies cannot be conducted to investigate situations that have never occurred in

actual financial markets, and somany factors affect price formation and liquidity in actualmarkets

that an empirical study cannot be conducted to isolate the direct effect on liquidity. In contrast,

artificial market simulation*3 using a kind of agent-basedmodel can isolate the pure contributions

of changes to liquidity and simulate changes that have never been observed. These are strong

points of artificial market simulation studies. Articles in both Nature (Farmer and Foley (2009))

and Science (Battiston et al. (2016)) have argued that artificial market studies are expected to

contribute to greater understanding of actual markets.

Many previous artificial market studies contributed to explaining the nature of financial market

phenomena such as bubbles and crashes. Recent artificial market studies have also contributed

to discussions of appropriate financial regulations and rules *4. The JPX Working Paper series

includes various studies contributing to such discussions.

There have been previous studies using an artificialmarketmodel to investigate arbitrage trades

between futures, ETFs, and stocks (Xu et al. (2014); Torii et al. (2015)). No previous study, however,

has used an artificial market model to investigate the relationship between liquidity and arbitrage

*1 In a real financial market, traders make such exchanges after trading hours.
*2 https://www.jpx.co.jp/english/equities/products/etfs/market-making/
*3 Excellent reviews include LeBaron (2006); Chen et al. (2012); Todd et al. (2016).
*4 Mizuta (2016) is a great review.
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trading costs.

Therefore, in this study, I expanded the artificial market model of Mizuta et al. (2013) to include

three risk assets—two stocks and an ETF—as shown in Figure 1. I also added an arbitrage agent

to perform arbitrage trading among these risk assets. I then investigated the relationship between

the liquidity of an ETF and the trading costs.

2 Artificial Market Model

The model of Chiarella and Iori (2002) is very simple but replicates long-term statistical char-

acteristics observed in actual financial markets: a fat tail and volatility clustering. In contrast,

Mizuta et al. (2013) replicates high-frequency micro structures, such as execution rates, cancel

rates, and one-tick volatility, that cannot be replicated with the model of Chiarella and Iori (2002).

In this study, I expanded the artificial market model of Mizuta et al. (2013) to include three

risk assets, denoted as stock 1, stock 2, and ETF (Figure 1), and I added an arbitrage agent to

perform arbitrage trading among these risk assets. The simplicity of the model is very important

for this study, because unnecessary replication of macro phenomena leads to models that are

overfitted and too complex. Such models prevent understanding and discovery of mechanisms

affecting price formation because of the increase in related factors. I explain the basic concept for

constructing our artificialmarketmodel in theAppendix “Basic Concept for ConstructingModel”.

In the expanded model here, the value of ETF is exactly the same as the sum of the values of

stocks 1 and 2. The exchange market for each of the three risk assets adopts a continuous double

auction to determine the market price. In this auction mechanism, multiple buyers and sellers

compete to buy and sell financial assets in the market, and transactions can occur at any time

whenever an offer to buy and an offer to sell match TSE (2015). The minimum unit of price change

is δP. The buy-order price is rounded off to the nearest fraction, and the sell-order price is rounded

up to the nearest fraction.

For each risk asset, the model includes n normal agents (NAs) that trade only that risk asset,

giving a total of 3n NAs. The model also includes one arbitrage agent (AA). The quantities of an

agent’s holding positions are not limited, so the agents can take any number of shares for long

and short positions to infinity.

2.1 Normal Agent (NA)

To replicate the nature of price formation in actual financial markets, I introduced the NA

to model a very general investor. Its behavior is as simple as replicating long-term statistical

characteristics and very short-term micro structures in real financial markets. First, at time t = 1,

NA No. 1 places an order to buy or sell its risk asset; then, at t = 2, 3, , , n, NAs No. 2, 3, , , n

respectively place buy or sell orders. At t = n + 1, the model returns to the first NA and repeats

3



ETF
stock 

1
stock

2＋

exchange

fundamental price
2Pf0

fundamental price
Pf0

fundamental price
Pf0

Figure 1 In the artificial market model in this study, one share of ETF can be exchanged for

one share each of stocks 1 and 2.

NA
(normal agent)

time

t=1 t=2 t=3 t=4 t=5

AA (arbitrage agent)

Figure 2 The AA (arbitrage agent) can always place, change, or cancel orders.

ETF

sell price buy

7 20300

10 20200

20100

20000

19900 1

19800 10

19700 6

19600 4

stock 1

sell price buy

30 10400

44 10300

70 10200

134 10100

10000 120

9900 88

9800 52

9700 25

stock 2

sell price buy

50 10400

70 10300

90 10200

116 10100

10000 154

9900 60

9800 55

9700 31

Figure 3 Example of an arbitrage trade.
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this cycle. An NA always places an order for only one share. For ETF, to investigate various

liquidity levels, an NA places orders with a constant probability k(0 < k < 1). Thus, the trading

volume of ETF is smaller than that of stock 1 or stock 2.

An NA determines an order price and buys or sells as follows. It uses a combination of

a fundamental value and technical rules to form an expectation on a risk asset’s return. The

expected return of agent j for each risk asset is

rte, j =
1

w1, j + w2, j + uj

(
w1, j log

Pf

Pt
+ w2, jr

t
h, j + w3, jϵ

t
j

)
, (1)

wherewi, j is the weight of term i for agent j and is independently determined by random variables

uniformly distributed on the interval (0,wi,max) at the start of the simulation for each agent. Pf is a

fundamental value for each risk asset and is constant*5: Pf = Pf0 for stocks 1 and 2, and Pf = 2Pf0

for ETF. In addition, Pt is the market price of the risk asset, and ϵt
j
is determined by random

variables from a normal distribution with average 0 and variance σϵ. Finally, rt
h, j

is a historical

price return inside an agent’s time interval τ j, where rt
h, j
= log (Pt/Pt−τ j ), and τ j is independently

determined by random variables uniformly distributed on the interval (1, τmax) at the start of the

simulation for each agent*6.

The first term of Eq. (1) represents a fundamental strategy: the agent expects a positive return

when the market price is lower than the fundamental value, and vice versa. The second term

of Eq. (1) represents a technical strategy: the agent expects a positive return when the historical

market return is positive, and vice versa.

After the expected return has been determined, the expected price is

Pt
e, j = Pt exp (rte, j). (2)

An order price Pt
o, j

is determined by random variables normally distributed with average Pt
e, j

and standard deviation Pσ, where Pσ is a constant. Whether to buy or sell is determined by the

magnitude relationship between Pt
e, j

and Pt
o, j
:

when Pt
e, j
> Pt

o, j
, the agent places an order to buy one share, but

when Pt
e, j
< Pt

o, j
, the agent places an order to sell one share*7.

2.2 Arbitrage Agent (AA)

As described previously, the value of one share of ETF is exactly the same as the sum of the

values of one share each of stocks 1 and 2. Therefore, when the AA buys ETF at a lower price than

the sum of the prices of stocks 1 and 2, it earns a profit consisting of the price difference, because

*5 This enables focusing on phenomena in short time scales, as the fundamental price remains static.
*6 When t < τ j, however, rt

h, j
= 0.

*7 When t < tc, however, to generate enoughwaiting orders, the agent places an order to buy one share when Pf > Pt
o, j
,

or to sell one share when Pf < Pt
o, j
.
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it can exchange ETF for the stocks and then sell the stocks at a higher combined price than the

ETF price. The practice of such trades earning the price difference between risk assets is called

“arbitrage.” As shown in Figure 2, the AA can always place, change, or cancel orders.

Figure 3 shows examples of order books for each of the risk assets. At this point, the sum of

the highest buy-order prices for stocks 1 and 2 is 20000 (=10000+100000). The highest buy-order

price for ETF is 19800, and there is no buy order at 19900. In this case, the AA first places an order

to buy one share at 19900 (shown in red) and then waits. Once the order is matched and the AA

buys ETF, it exchanges the ETF share for stocks 1 and 2 and then sells them each at 10000. Thus,

the AA earns a profit of 100 from the price difference. Of course, the AA can also earn a profit

in the opposite case, by first selling borrowed ETF at a higher price, buying the stocks at lower

prices, exchanging the stocks for ETF, and returning the ETF, again earning the price difference as

a profit.

Although the above example assumes that the trading costs are zero, in real financial markets

there are several types of costs, and they are never zero. In this study, therefore, I definedC = c×Pf0

as a summation of costs and required a profit for any one trade. Because C includes the required

profit, when the price difference of risk assets is over C, the AA can do an arbitrage trade.

When B1,B2, and BETF are the highest respective prices of stock 1, stock 2, and ETF, and S1,S2,

and SETF are the corresponding lowest prices, the AA places an order to buy one share of ETF

at B1 + B2 − C when BETF < B1 + B2 − C, and/or to sell one share of ETF at S1 + S2 + C when

SETF > S1 + S2 + C. Note that the AA can place both buy and sell orders at the same time. After

that, when the buy order for ETF is matched, the AA immediately sells one share each of stocks 1

and 2 at B1 and B2, respectively. These sell orders arematched immediately because ofwaiting buy

orders, and an arbitrage trade is completed. Conversely, when the sell order for ETF is matched,

the AA immediately buys one share each of stocks 1 and 2 at B1 and B2, respectively. On the other

hand, the AA changes or cancels its orders when one of B1,B2,BETF,S1,S2, and SETF changes.

Because the AA places orders only when the price difference is more than C, it never loses

money; on the other hand, it is also possible that no profit chance occurs and the AA never places

orders.

3 Simulation Results

In this study, I set*8 the same parameters as in Mizuta et al. (2013). Specifically, I set n =

1000,w1,max = 1,w2,max = 10,w3,max = 1, τmax = 10000, σϵ = 0.06,Pσ = 30, tc = 20000, δP = 0.01, k =

0.1, and Pf0 = 10000. In short, the fundamental values for stocks 1 and 2 were both Pf0 =

10000, and that for ETF was 2Pf0 = 20000. I ran simulations to t = te = 10000000 for c =

0%, 0.005%, 0.01%, 0.025%, 0.05%, 0.1%, 0.5%, and for the case without the AA. All these cases not

*8 I explain how they verified their model in the Appendix “Verification of the Model”.
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Figure 4 Market price differential rateMd and trading volume of the AA for various costs c.

only had the other parameters fixed but also used the same randomnumber table. I then simulated

these runs 100 times, changing the random number table each time, and I report the results here

as the averaged statistical values of the 100 runs.

Figure 4 shows the market price differential rate Md and the trading volume of the AA for

various costs c. Here,Md indicates how much the price of ETF and the sum of the prices of stocks

1 and 2 differ. I defined Md as

Md =
1

te

te∑
t=1

|Pt
ETF

− (Pt
1
+ Pt

2
)|

Pt
1
+ Pt

2

, (3)

where Pt
ETF
,Pt

1
, and Pt

2
are the prices of ETF, stock 1, and stock 2 at time t, respectively. || means

absolute value. As the figure shows, a lower cost meant more trading volume and a lower price

differential. The price differential sharply changed when the cost was near 0.1%. This value

of 0.1% was similar to the standard deviation of returns (i.e., the volatility) for 10 time periods,

0.11%. Therefore, whether the cost is higher or lower than the volatility seems to indicate a very

important boundary.

Figure 5 shows the relationship between cost and volatility. The red dashed line represents

the sum of the highest buy-order prices of stocks 1 and 2, and the black solid line represents the

highest buy-order price of ETF. Therefore, the AA can make an arbitrage trade only when the

red dashed line is above the black solid line plus the cost. Because the prices of each risk asset

fluctuate in their volatility, when the volatility is sufficiently greater than the cost, the AA has

more chances for arbitrage trades. It then trades more, and the market price differential becomes

7



time

price

volatility

cost

chance of 
arbitrage trade

highest buy-order price of ETF

sum of
highest buy-order prices of 

stocks 1 and 2

Figure 5 Relationship between cost and volatility.

lower.

Figure 6 shows the market inefficiency Mie of ETF and stock 1 for various costs c. To directly

measure the market efficiency, I defined Mie as

Mie =
1

te

te∑
t=1

|Pt − Pf |

Pf
. (4)

Here,Mie is always greater than zero, andMie = 0 means that a market is perfectly efficient*9. The

largerMie is, the less efficient the market becomes*10.

With lower cost, the ETF market became more efficient, but that of stock 1 did not. The market

inefficiency of ETF also sharply changed when the cost was near 0.1%, but that of stock 1 did not.

This means that the reason why the ETF market becomes more efficient is not because it gains

efficiency from the stock 1 market.

Figure 7 shows the depths of waiting orders in the ETF and stock 1 markets for various costs

c. The depth was defined as the average over all time of the number of waiting orders between

*9 Even though I calculated the market inefficiency, I did not intend to discuss about efficient market hypothesis. In

our model the market is not efficient because of existence of the technical strategy in Eq. (3) and I discussed how

efficient more by AA.
*10 This index is sometimes used in experimental financial studies of people, in which this market inefficiency is

sometimes called relative absolute deviation (RAD) (Stöckl et al. (2010)). Many indications for measuring market

efficiency have been proposed (Verheyden et al. (2013)). A feature of Mie is that it is calculated directly using a

fundamental pricePf , which is never observed in empirical studies. I can also useMie in simulation and experimental

studies because I can exactly define Pf .
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Figure 6 Market inefficiency for various costs c.
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Figure 7 Depths of waiting orders for various costs c.

±0.1% from the average prices of the highest buy order and the lowest sell order. Lower cost

meant a thicker depth for ETF. The depth for ETF also sharply changed when the cost was near

0.1%. On the other hand, the depth for stock 1 had the opposite tendency. Figure 8 shows the

trading volumes for ETF and stock 1. In this case, lower cost meant higher trading volume for

both. Lower cost thus makes the depth for stock 1 thinner and the trading volume larger, because

orders for arbitrage trades and waiting orders for stock 1 are matched.
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270000

280000

290000

300000

310000

320000

330000

340000

8600

8800

9000

9200

9400

9600

9800

10000

1
0
%

2
0
%

3
0
%

5
0
%

7
0
%

1
0
0
%

tr
a
d
in

g
 v

o
lu

m
e
 o

f 
s
to

c
k
 1

d
e
p
th

 o
f 
s
to

c
k
 1

ETF order ratio (k)

depth trading volume

Figure 9 Depth of waiting orders and trading volume for stock 1 for various ETF order ratios k with c = 0.

In real financial markets, however, there are traders who place more orders when the trading

volume increases. Mymodel did not implement this behavior. It is possible that lower cost would

increase both the depth and the trading volume because of such behavior. This remains for a

future work.

Next, I investigated the case with more liquidity for ETF. In the above discussion, I fixed the

ETF order ratio to k = 0.1. In the following, I considered various k for c = 0 (i.e., zero cost). Figure

9 shows the depth and trading volume for stock 1 for various k. Larger kmeant thinner depth and
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Figure 10 Market price differential rate Md for various ETF order ratios k with c = 0.

more trading volume. It seems that more ETF orders caused more matching of arbitrage trade

orders and waiting orders for stock 1. Figure 10 shows the market price differential rate Md for

various k. As k increased, so did Md. Even though more arbitrage trades occurred because of the

larger k, the market price differential rate Md did not improve.

This result implies that, in the case when the trading volume of ETF increases to near that of

a stock, improving the market price differential is more difficult by arbitrage trades like those

modeled in this study. Therefore, the result implies that other ways are needed to improve the

market price differential in such cases.

4 Summary and Future Works

In this study, I expanded the artificial market model of Mizuta et al. (2013) to include three

risk assets, denoted as stock 1, stock 2, and ETF (Figure 1), along with an arbitrage agent (AA)

that could perform arbitrage trades among these risk assets. I then investigated the relationship

between the liquidity of ETF and the trading costs.

My results showed that, because the prices of each risk asset fluctuate in their volatility, when

the volatility is sufficiently greater than the cost, the AA has more chances to make arbitrage

trades. As the AA trades more, the market price differential becomes lower. In addition, lower

cost means a thicker depth of waiting trades for ETF, whereas the depth tendency of a stock is the

opposite. Furthermore, lower cost increases the trading volume of both. Lower cost makes the
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Table 1 Statistics without arbitrage agents

execution rate 32.3%

trading cancel rate 26.1%

number of trades / 1 day 6467

standard for 1 tick 0.0512%

deviations for 1 day (20000 ticks) 0.562%

kurtosis 1.42

lag

1 0.225

autocorrelation 2 0.138

coefficient for 3 0.106

square return 4 0.087

5 0.075

depth thinner and the trading volume greater for a stock because the orders for arbitrage trades

and the waiting orders for the stock are matched.

Real financial markets, however, include traders who place more orders when the trading

volume increases. Mymodel did not implement this behavior. It is possible that lower cost would

increase both the depth and the trading volume with such behavior. This remains for a future

work.

I also investigated the case with more liquidity for ETF and found that it makes the market price

differential larger. Even though more arbitrage trades occur because of the larger ETF liquidity,

the market price differential rate does not improve.

This result implies that, when the trading volume of ETF increases to near that of a stock, im-

proving the market price differential is more difficult through arbitrage trades like those modeled

in this study. This suggests that other ways are needed to improve the market price differential in

such cases.

Appendix

4.1 Basic Concept for Constructing Model

Anartificialmarketmodel, which is a kindof agent-basedmodel, can beused todiscuss situation

that have never been realized, can handle regulation changes that have never been made, and it

can isolate the pure contribution of these changes to price formation and liquidity LeBaron (2006);

Chen et al. (2012); Mizuta (2016); Todd et al. (2016). These are the strong points of the artificial

market simulation.
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However, the outputs of this simulation would not be accurate or credible forecasts of the actual

future. The simulation needs to reveal possible mechanisms that affect price formation through

many simulation runs, e.g., searching for parameters or purely comparing the before/after of

changes. The possible mechanisms revealed by these runs provide new intelligence and insight

into the effects of the changes on price formation in actual financial markets. Other methods of

study, e.g., empirical studies, would not reveal such possible mechanisms.

Indeed, artificial markets should replicate macro phenomena existing generally for any asset

and any time. Price variation, which is a kind of macro phenomena, is not explicitly modeled

in artificial markets. Only micro processes, agents (general investors), and price determination

mechanisms (financial exchanges) are explicitly modeled. Macro phenomena emerge as the

outcome interactions of micro processes. Therefore, the simulation outputs should replicate

existing macro phenomena in order to generally prove that simulation models are probable in

actual markets.

However, it is not a primary purpose for an artificial market to replicate specific macro phenom-

ena only for a specific asset or a specific period. An unnecessary replication of macro phenomena

leads to models that are over-fitted and too complex. Such models would prevent us from under-

standing and discovering mechanisms that affect price formation because the number of related

factors would increase.

Indeed, artificial market models that are too complex are often criticized because they are very

difficult to evaluateChen et al. (2012). A model that is too complex not only would prevent us

from understanding mechanisms but also could output arbitrary results by over-fitting too many

parameters. It is more difficult for simpler models to obtain arbitrary results, and these models

are easier to evaluate.

Therefore, I constructed an artificial market model that is as simple as possible and do not

intentionally implement agents to cover all the investors who would exist in actual financial

markets.

AsWeisbergmentionedWeisberg (2012), “Modeling, (is) the indirect study of real-world systems

via the construction and analysis of models.” “Modeling is not always aimed at purely veridical

representation. Rather, they worked hard to identify the features of these systems that were most

salient to their investigations.” Therefore, under different phenomena to focus on, good models

are different. Thus, my model is good only for the purpose of this study and may be not good

for other purposes. An aim of my study is to understand how important properties (behaviors,

algorithms) affect the investigation of macro phenomena and play a role in the financial system

rather than representing actual financial markets precisely.
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4.2 Verification of the Model

In many previous artificial market studies, the models were verified to see whether they could

explain stylized facts, such as a fat-tail or volatility-clustering LeBaron (2006); Chen et al. (2012);

Mizuta (2016); Todd et al. (2016). A fat-tail means that the kurtosis of price returns is positive.

Volatility-clustering means that square returns have a positive autocorrelation, and this autocor-

relation slowly decays as its lag becomes longer. Many empirical studies, e.g., that of Sewell

Sewell (2011), have shown that both stylized facts (fat-tail and volatility-clustering) exist statisti-

cally in almost all financial markets. Conversely, they also have shown that only the fat-tail and

volatility-clustering are stably observed for any asset and in any period because financial markets

are generally unstable.

Indeed, the kurtosis of price returns and the autocorrelation of square returns are stably and sig-

nificantly positive, but the magnitudes of these values are unstable and very different depending

on the asset and/or period. The kurtosis of price returns and the autocorrelation of square returns

were observed to have very broad magnitudes of about 1 ∼ 100 and about 0 ∼ 0.2, respectively

Sewell (2011).

For the above reasons, an artificial market model should replicate these values as significantly

positive and within a reasonable range as I mentioned. It is not essential for the model to replicate

specific values of stylized facts because the values of these facts are unstable in actual financial

markets.

Table 1 lists the statistics, standard deviation of returns, kurtosis of price returns, and autocorre-

lation coefficient for square returns of stock 1 when there are no arbitrage agents. This shows that

this model replicated the statistical characteristics, fat-tails, and volatility-clustering observed in

real financial markets.
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