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ABSTRACT. In pricing and hedging derivatives, one uses stochastic processes to represent movement of
underlying assets and other important state variables (such as volatility). In this report, we collect several
techniques from stochastic analysis which we believe are useful for financial modeling, derivative pricing,
and parameter estimation. A key element is the strong Markov property that helps to streamline seemingly
complex equations and to tremendously reduce variance in numerical simulations.

1. INTRODUCTION

In pricing and hedging derivatives, one uses stochastic processes to represent movement of underlying
assets (stock price, index, interest rate) and other state variables such as volatility. Perhaps, the most
popular is geometric Brownian motion, which is explained in almost all financial engineering books. A
brief review is also in Futures and Options Report (Egami (2022)).

Let us consider a set of all the possibilities of future outcomes Ω and denote our stochastic process by
X = {Xt ; t ≥ 0} with the initial value x. In this report, we assume that the process X is right continuous.
Given a future scenario ω ∈ Ω and a fixed time t, the stochastic process X takes a value Xt(ω) in some
space (such as Rd). Given this ω , X keeps taking values as time goes and a history of its behavior is
recorded. This is called the filtration generated by X and denoted by F = {Ft ; t ≥ 0}. Intuitively, Ft

is the accumulated information of X up to time t. While it is possible to enlarge the filtration including
more information than the behavior of X , we confine to the above-defined F in this report.

If {Xt ,Ft , t ≥ 0} is a Markov process, it has the property for a certain set A in Rd

Px(Xs+t ∈ A|Fs) = Px(Xs+t ∈ A|Xs), (1.1)

which roughly means the following. Suppose that the process X started at the value of x at time zero and
we are now at time s and wish to estimate the value of X at s+ t, more specifically, the probability that
the value is in the set A. The Markov property says that, for this purpose, we do not have to bring all
the records of X up to time s, because looking at the sole value of X at time s is equally effective. This
property saves us a vast amount of time and effort (e.g. in simulation) since we do not have to consider
through what path X has come to the value Xs. For another example, take a random variable Y : at time s
we do not know what value is, but we may estimate its value by looking into future behavior of X . One
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could imagine that X represents a stock price and Y is the value of an option written on this stock. Then
if X is a Markov process, we have

Ex[Y |Fs] = Ex[Y |Xs]. (1.2)

A strong Markov process does better than this. The above (1.1) holds even if the usual time t is
replaced by a random time U of a special kind (called stopping time). Since it is random, it depends on
a future scenario ω and we do not know a priori when a random time U(ω) occurs. A random time U
is called a stopping time of F provided that we can tell whether or not U has happened up to time t by
looking at the record of X up to time t. That is, {ω : U(ω) ≤ t} ∈Ft for each t. If {Xt ,Ft , t ≥ 0} is a
strong Markov process, it has the property for a certain set A in Rd

Px(XU+t ∈ A|FU) = Px(XU+t ∈ A|XU), (1.3)

where FU is the record of X up to the stopping time U .
Frequently used stochastic processes in financial applications such as diffusions and Lévy processes

are strongly Markov.

2. PRICING A BARRIER OPTION

A motivating example is the valuation of barrier options. Suppose that a stock is denoted by S =

{St ; t ≥ 0}. A down-and-in call has the payoff function f at maturity T with strike K

f (x,ω) := (x−K)+1lD(ω) = max(0,x−K)1lD(ω)

where, denoting the predetermined barrier by b, the indicator 1lD means

1lD(ω) :=

1, if Su(ω)≤ b for some 0≤ u≤ T ,

0, otherwise.

In other words, the option has a positive value only if the stock price falls below the level b before
maturity T . Let us define the random time Hb by

Hb := min{t ≥ 0 : St ≤ b}, (2.1)

which is the first time that S hits the level b. See Figure 1 for a path where the option has positive value.
This Hb is obviously a stopping time since one can tell whether this event has occurred up to time t only
by looking at the stock price up to time t. Let the initial stock price be S0 = x(> b) and the risk-free
rate r. The time zero price P(0,x) of the down-and-in call is computed by the well-known risk-neutral
pricing formula

P(0,x) = E∗x [e−rT (ST (ω)−K)+1lD(ω)]

where the expectation E∗x [·] indicates that the stock price starts with S0 = x and we are taking expectations
under the risk-neutral probability measure.

It is often a good strategy to condition on the information up to the stopping time as we shall show
now. Let us define the price of plain vanilla call at time t written on the same stock S by Q(t,St) with
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Fig. 1. DOWN-AND-IN OPTION: A sample path where a down-and-in option has posi-
tive value
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the starting date t and stock price at that time St , so that the remaining time to maturity is T − t. That is,
Q(t,St) = E∗x [e−r(T−t)(ST −K)+|St ]. With this notation, P(0,x) above becomes

P(0,x) = E∗x [E∗x [e−rHb1lD(ST −K)+|FHb]]

= E∗x [e−rHb1lDE∗x [e−r(T−Hb)(ST −K)+|FHb]]

= E∗x [e−rHb1lDE∗x [e−r(T−Hb)(ST −K)+|SHb ]]

= E∗x [e−rHb1lDQ(Hb,SHb)], (2.2)

where the first line is the tower property, the second is taking out what is known at time Hb (see [Section
II.41, Rogers and Williams (1994)]) and the third is due to the strong Markov property. At time Hb, it
becomes to our knowledge that the event D has just occurred. This is why 1lD is taken out from the inner
expectation in the second line. All we need to know from the record of S is its price at time Hb. For the
last line, we just apply the above definition of Q(·, ·) by reading t and St as Hb and SHb , respectively.

If S follows a geometric Brownian motion, then SHb = b, the density of the first passage time Px(Hb ∈
dt) is available. See page 628 in Borodin and Salminen (2002). Alternatively, one can use the Laplace
transform of the distribution of Hb (see the next section as well as the quoted book) to generate random
samples by the method proposed in Ridout (2009). In either case, we only need to evaluate or simulate
Hb. Finally, Q(Hb,b) is computed by the Black-Scholes formula with the initial stock price b and time
to maturity T −Hb since it is merely the plain vanilla call price.

3. THE SHIFT OPERATOR, α -POTENTIAL, AND DYNKIN’S FORMULA

We have seen that the strong Markov property can make seemingly complicated problems easier. For
concrete computations and for practical applications, let X = (Xt , t ≥ 0) be a diffusion process taking
values on Rd . The interested readers may see Karlin and Taylor (1981) for detailed information of
diffusions, but it suffices to consider geometric Brownian motion for this report. The shift operator
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Fig. 2. THE SHIFT OPERATOR: The left panel is Xt(ω) and the right panel is Xt(θs(ω)). Note
that the path on the right panel starts at the point corresponding to (s,Xs) on the left panel. The
path on the left from time zero to t− (just prior to time t) is irrelevant information in drawing the
path on the right panel.

s s+t t
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θs : Ω→Ω,s≥ 0 further facilitates rigorous argument:

Xs+t(ω) = Xt(θs(ω)) = (Xt ◦θs)(ω) for each s, t ≥ 0. (3.1)

Let us examine the diagram in Figure 2. The shift operator shifts the time (in a future scenario) by the
length of s and makes the point s as a new ”origin”. From the new origin s, the time elapses by the length
of t. If we use this shift operator, (1.1) can be written

Px(Xs+t(ω) ∈ A|Fs) = Px{(Xt ◦θs)(ω) ∈ A|Fs}= PXs[Xt(ω) ∈ A],

that is, the process X starts anew from time s at the position Xs. Similarly, (1.2) is written for the
derivative Y written on the underlying asset X

Ex[Y (ω)|Fs] = Ex[(Y ◦θs)(ω)|Fs] = EXs[Y (ω)] (3.2)

For simpler exposition, we shall omit the argument ω and write Xt instead of Xt(ω) from this point
on. Now let f be a bounded continuous function and α > 0, the discount rate. We introduce the function
Uα f , which is called the α-potential of f and is defined by

Uα f (x) := Ex

[∫
∞

0
e−αt f (Xt)dt

]
.

This is very important and useful for financial modelling. For example, if f and X denote a dividend
function and stock price at time t, respectively, then Uα f is the present value (discounted at rate α) of
the total amount of dividend accumulated until time infinity.
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Let T be a stopping time and X a strong Markov process. Let us imagine that we observe the stock
price X up to the stopping time T and split the Uα f (x) before and after the stopping time T ,

Uα f (x) = Ex

[∫ T

0
e−αt f (Xt)dt

]
+Ex

[∫
∞

T
e−αt f (Xt)dt

]
.

Recall that x is the initial level of X at time zero. We then have

Ex

[∫
∞

T
e−αt f (Xt)dt

]
= Ex

[
Ex

{∫
∞

T
e−αt f (Xt)dt

∣∣∣∣FT

}]
= Ex[e−αTUα f (XT )],

where we use the tower property for the first equality and the strong Markov property, with a help of the
shift operator, for the second. We refer the interested reader to Appendix A (to be posted in Part II) for a
derivation. Hence we have obtained

Uα f (x) = Ex

[∫ T

0
e−αt f (Xt)dt

]
+Ex[e−αTUα f (XT )]. (3.3)

The meaning of the term Ex[e−αTUα f (XT )] in (3.3) is intuitively clear: Given the information up to time
T , Uα f (XT ) is the amount of dividend received from time T to infinity, but by starting with the stock
price at XT (instead of x). Since this amount Uα f (XT ) is calculated at time T , we need to discount it
from time T to time zero for making it the present value at time zero. This is done by multiplying e−αT .

Since one further step shall bring (3.3) to the celebrated Dynkin’s formula, let us introduce another
object of diffusions. The infinitesimal generator G of a diffusion X is defined by

Gg(x) := lim
t↓0

Ex[g(Xt)]−g(x)
t

(3.4)

for a suitable function g. This is how much the value g(Xt) would change if an infinitely small amount
of time has elapsed from time zero. This generator is closely related to the above-mentioned α-potential
in an interesting way

Uα(α−G)g = g, (3.5)

that is, (α −G) and Uα are inverse to each other. For a proof, see [Section III.4, Rogers and Williams
(1994)]. Now let us set f = (α−G)g in (3.3) to obtain

Uα(α−G)g(x) = Ex

[∫ T

0
e−αt(α−G)g(Xt)dt

]
+Ex[e−αTUα(α−G)g(XT )].

But with (3.5), it reduces to

g(x) = Ex

[∫ T

0
e−αt(α−G)g(Xt)dt

]
+Ex[e−αT g(XT )],

which, after rearrangement, is called Dynkin’s formula in regard to a stopping time T

Ex[e−αT g(XT )]−g(x) = Ex

[∫ T

0
e−αt(G−α)g(Xt)dt

]
. (3.6)
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Let us apply (3.6) for an explicit computation of Ex[e−αHb] where Hb = min{t ≥ 0 : St ≤ b} as in (2.2).
Let X be a geometric Brownian motion with drift parameter µ ∈ R and diffusion parameter σ > 0

Xt = X0 · e(µ−
1
2 σ2)t+σWt = x · eσ2νt+σWt ,

where ν = µ

σ2 − 1
2 . The infinitesimal generator for a linear diffusion dXt = µ(Xt)dt +σ(Xt)dWt is

Gg(x) =
1
2

σ
2(x)

d2

dx2 g(x)+µ(x)
d
dx

g(x), (3.7)

which is essentially the dt term in the Itô formula. In the geometric Brownian motion case, µ(x)= µx and
σ(x) = σx, so that Gg(x) = 1

2σ2x2 d2

dx2 g(x)+µx d
dxg(x). The two solutions to the equation (G−α)g(x) =

0 are

g(x) = x
√

ν2+ 2α

σ2−ν
and g(x) = x

−
√

ν2+ 2α

σ2−ν
.

(Try a function of the form xβ ,β ∈R and compute (G−α)xβ = 0. The exponent β is determined by the
requirement that the latter equation be held for any x ∈ R.)

Recall that the starting stock price x is greater than the threshold level b and set T = Hb with

g(x) := x
−
√

ν2+ 2α

σ2−ν
for b≤ x < ∞

in (3.6). While there are two solutions of (G−α)g(x) = 0, we need to choose this solution since the
other one becomes unbounded as x→ ∞. Note that XHb = b and that from time zero to Hb, Xt is in the
interval of (b,∞). On (b,∞), (G−α)g = 0 by the construction of g(·). Therefore, (3.6) becomes

Ex[e−αHbg(b)]−g(x) = 0

on the set {ω : Hb(ω)< ∞}. Hence we have established

Ex[e−αHb ] =
g(x)
g(b)

=
(x

b

)−√ν2+ 2α

σ2−ν

on the set {ω : Hb(ω) < ∞}. This is a powerful method to compute various functionals explicitly pro-
vided that we know the generator of specific interest.
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